Hysteresis Curve Fitting Optimization of Magnetic Controlled Shape Memory Alloy Actuator

نویسندگان

  • Fuquan Tu
  • Shengmou Hu
  • Yuhang Zhuang
  • Jie Lv
  • Yunxue Wang
  • Zhe Sun
  • Jose Luis Sanchez-Rojas
چکیده

As a new actuating material, magnetic controlled shape memory alloys (MSMAs) have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical precision positioning is poor, caused by weak repeatability under a certain stimulus. This problem results from the error of a large magnetic hysteresis in an external magnetic field. A suitable hysteresis modelling method can reduce the error and improve the accuracy of the MSMA actuator. After analyzing the original hysteresis modelling methods, three kinds of hysteresis modelling methods are proposed: least squares method, back propagation (BP) artificial neural network, and BP artificial neural network based on genetic algorithms. Comparing the accuracy and convergence rate of three kinds of hysteresis modelling methods, the results show that the convergence rate of least squares method is the fastest, and the convergence accuracy of BP artificial neural networks based on genetic algorithms is the highest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

An Accurately Controlled Antagonistic Shape Memory Alloy Actuator with Self-Sensing

With the progress of miniaturization, shape memory alloy (SMA) actuators exhibit high energy density, self-sensing ability and ease of fabrication, which make them well suited for practical applications. This paper presents a self-sensing controlled actuator drive that was designed using antagonistic pairs of SMA wires. Under a certain pre-strain and duty cycle, the stress between two wires bec...

متن کامل

Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model

As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to impr...

متن کامل

Reinforcement Learning Fuzzy Neural Network Control for Magnetic Shape Memory Alloy Actuator

Magnetic shape memory alloy actuator is a new type of actuator that can offer big travel and high resolution of output displacement, which makes it suitable for driving task. However, its output displacement represents the hysteresis applied to input magnetic field. Hysteresis restricts its application in the high precision positioning. In order to eliminate the hysteresis of magnetic shape mem...

متن کامل

Hybrid Control Method of Magnetically Controlled Shape Memory Alloy Actuator Based on Inverse Prandtl-Ishlinskii Model

The hysteresis nonlinearity of magnetically controlled shape memory alloy actuator is an obstacle in the achievement of high positioning accuracy. To eliminate the influence of hysteresis nonlinearity, a PID hybrid control method which uses the inverse Prandtl-Ishlinskii model as a feedforward controller is proposed in this paper. The PID parameters are searched by particle swarm optimization w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016